
Accelerating unstructured-grid CFD algorithms on
NVIDIA and AMD GPUs

Christopher P. Stone
National Institute of Aerospace

Hampton, VA, USA
christopher.stone@nianet.org

Aaron Walden
Langley Research Center

NASA
Hampton, VA, USA

aaron.c.walden@nasa.gov

Mohammad Zubair
Dept. of Computer Science

Old Dominion U.
Norfolk, VA, USA
zubair@cs.odu.edu

Eric J. Nielsen
Langley Research Center

NASA
Hampton, VA, USA

eric.j.nielsen@nasa.gov

Abstract—Computational performance of the FUN3D
unstructured-grid computational fluid dynamics (CFD)
application on GPUs is highly dependent on the efficiency of
floating-point atomic updates needed to support the irregular
cell-, edge-, and node-based data access patterns in massively
parallel GPU environments. We examine several optimization
methods to improve GPU efficiency of performance-critical
kernels that are dominated by atomic update costs on NVIDIA
V100/A100 and AMD CDNA MI100 GPUs. Optimization on
the AMD MI100 GPU was of primary interest since similar
hardware will be used in the upcoming Frontier supercomputer.
Techniques combining register shuffling and on-chip shared
memory were used to transpose and/or aggregate results
amongst collaborating GPU threads before atomically updating
global memory. These techniques, along with algorithmic
optimizations to reduce the update frequency, reduced the
run-time of select kernels on the MI100 GPU by a factor of
between 2.5 and 6.0 over atomically updating global memory
directly. Performance impact on the NVIDIA GPUs was mixed
with the performance of the V100 often degraded when using
register-based aggregation/transposition techniques while the
A100 generally benefited from these methods, though to a lesser
extent than measured on the MI100 GPU. Overall, both V100
and A100 GPUs outperformed the MI100 GPU on kernels
dominated by double-precision atomic updates; however, the
techniques demonstrated here reduced the performance gap and
improved the MI100 performance.

Index Terms—Unstructured-grid CFD, GPU Performance, Per-
formance Portability, AMD ROCm, Atomic Update

I. INTRODUCTION

FUN3D [1] is a node-based, unstructured, finite-volume
CFD application that supports several linear volumetric cell
types such as tetrahedra, pyramids, prisms, and hexahedra
along with triangular and quadrilateral boundary surfaces.
FUN3D uses an implicit time integration method, which
requires the assembly of the Jacobian matrix of the nonlinear
right-hand-side residual vector in order to converge the solu-
tion at each time-step. This results in a large, sparse linear
system of dense block matrices that are solved each nonlinear
iteration using an iterative point-implicit solver. Aside from
the linear solver, the computation of the approximate Jacobian

This research was sponsored by the NASA Langley Research Center
CIF/IRAD program, the NASA Transformational Tools and Technologies
(TTT) Project of the Transformative Aeronautics Concepts Program under
the Aeronautics Research Mission Directorate, and the National Institute of
Aerospace Cooperative Agreement award NNL09AA00A.

matrix (i.e., the left-hand side) and the nonlinear residual (i.e.,
the right-hand-side) are the most expensive parts of a FUN3D
simulation.

While the FUN3D solution variables are nodal, different
physical processes are implemented using either cell-based
(e.g., diffusion) or edge-based (e.g., convection) algorithms.
This leads to highly irregular data access patterns as the
different connectivity structures are traversed and the nodal
data are updated with the cell- or edge-based computations.
In the massively parallel GPU environments, atomic updates
are used to avoid race conditions while maintaining acceptable
levels or parallelism. As such, FUN3D’s GPU performance
is highly dependent on efficient atomic updates to global
memory.

FUN3D has been studied extensively on several many-core
acceleration devices [2] and has been scaled to over 16,000
NVIDIA V100 GPUs [3] on the Summit supercomputer at
Oak Ridge National Laboratory (ORNL). The next-generation
system at ORNL, Frontier [4], will be based on AMD
CDNA GPUs. AMD and NVIDIA GPUs share a common
parallel taxonomy (i.e., single-instruction, multiple thread –
SIMT), have many common features (e.g., shared memory
for collaborative groups of SIMT threads, register shuffling),
and development environments (e.g., CUDA and ROCm/HIP).
These commonalities simplify application portability but per-
formance optimizations are still necessary due to key low-level
differences such as the SIMT vector length: 32 threads per
CUDA warp vs. 64 SIMT threads per CDNA wave-front).

As noted, the multicolor Gauss–Seidel point-implicit iter-
ative solver is the most computationally expensive and, in
the context of accelerator computing, is the most extensively
studied [2], [5]–[7] aspect of FUN3D. It is possible to improve
the performance of kernels that process the irregular cell, edge,
and nodal FUN3D data structures and depend upon atomic
updates by exploiting collaborative thread groups (CGs) in the
SIMT programming models supported by CUDA and ROCm.
CGs at the thread-block or the finer warp1 level can efficiently
exchange on-chip shared or register memories and support
suitable synchronization mechanisms. When combined, data

1We shall use the term warp to denote the vector width on both NVIDIA
and AMD platforms for simplicity.

can be efficiently reduced, broadcast, transposed and aggre-
gated to improve data access layouts and reduce the frequency
and irregularity of atomic updates. Because of the different
SIMT widths on the NVIDIA and AMD GPU architectures,
different CG approaches may be necessary to achieve high
performance.

In this study, we examine different optimization meth-
ods using CGs to improve the computational throughput of
performance-critical FUN3D kernels that have irregular access
patterns and are dependent on atomic updates on NVIDIA
V100 and A100 GPUs and AMD MI100 GPUs. Performance
studies are provided using several different strategies to effi-
ciently transpose and accumulate results using collaborating
threads in order to reduce the dependency on atomic updates.
Results of this study will be of use by developers and computa-
tional scientists investigating performance portability between
the CUDA and ROCm GPU programming environments.

II. METHODOLOGY

Most simulation meshes of interest to the FUN3D commu-
nity are dominated by tetrahedral cells (TET) with a smaller
but appreciable number of prismatic cells (PRZ) since prisms
allow for greater orthogonality at viscous boundary surfaces.
As such, we shall focus on only TET and PRZ cell types for
this discussion.

FUN3D supports both a calorically-perfect gas model, suit-
able for modeling nonreactive, compressible aerodynamics,
and a generic gas model that supports reacting gases. For this
study, we shall focus on only the perfect gas model in which
five conservation equations are solved at each mesh vertex (or
node) for mass, momentum (3), and energy.

FUN3D’s unstructured Jacobian and residual kernels can
be split into edge- and cell-based formulations. The edge-
based kernels are used for inviscid fluxes and other node-
centric operations (e.g., gradients computed with a least-
squares formulation). Viscous (and other diffusive) flux terms
and their associated Jacobian terms are computed using cell-
based kernels which combine cell-centered gradients and vari-
able values (averages of the nodes) with terms computed at
the edge midpoints. All cells of the same type are computed
in parallel to allow for function specialization.

Because of the unstructured nature of the cell geometries,
values at the nodes in both edge- and cell-based kernels must
be updated atomically since vertices have at least three edges
and can be members of many neighboring cells or edges that
are being evaluated in parallel. In all common scenarios, the
nodal value updates use the atomic summation, atomic-add2,
operation on either a single- (fp32) or double-precision (fp64)
value but do not require the newly updated results (i.e., the
reduction version of the atomic-add operator).

Note that it is possible to formulate many of the edge- and
cell-based unstructured grid kernels without needing atomic
updates. For example, edge or cell coloring, like that used

2Atomic summation is implemented in the atomicAdd device function in
the CUDA and ROCm/HIP languages.

in the multicolor Guass-Seidel point-solver, could identify
independent work items that can be updated concurrently
without race conditions; but, this would reduce the potential
parallelism. Another race-free approach is to use a node-
centric formulation in which all edges or cells influencing
a given node are evaluated sequentially or reduced in par-
allel. However, this approach would significantly increase the
memory bandwidth and the level of redundant work as well
as suffer from load imbalances as the number of edges or
cells acting on a node can vary widely. For these reasons, the
race-free approaches were not pursued.

Atomic updates ensure that a specified memory address
can be updated by any number of concurrent threads but do
not guarantee the order in which operations are completed.
When multiple atomic updates are issued to the same memory
location concurrently, each individual update is applied serially
but in an arbitrary order. This scenario, called a collision,
reduces the throughput of the atomic update.

On both NVIDIA and AMD GPUs, atomic updates can
be issued to both global and shared memory addresses. The
V100, A100, and MI100 GPUs support both fp32 and fp64
global and shared memory atomic-add operations; however,
shared-memory floating-point atomics use a compare-and-
swap (CAS) algorithm, which is generally slower, when
contended, than if implemented in hardware. All GPUs have
hardware support for fp32 atomic-add to global memory.
NVIDIA V100 and A100 GPUs have hardware support for
fp64 atomic-add operations to global memory but MI100 lacks
hardware support for this operation, which is used heavily in
residual computations.

Atomic updates to global memory are applied to the L2
cache on the GPUs. Updating cachelines already in the L2
can improve performance as this avoids a load from global
memory. In the massively parallel GPU environments, ef-
ficient cacheline access often requires using a structure-of-
arrays (SoA) data layout such that contiguous threads access
contiguous elements of the array.

For all kernels to be discussed here, atomic-add operations
are used to update multiple values per vertex. FUN3D uses
an array-of-structure (AoS) data storage format in which 5
(or more) solution variables are stored contiguously at each
node. For the perfect gas model studied here, five variables
are updated per node for residual computations and up to 25
values for Jacobian computations (i.e., a 5x5 block matrix
representing the partial derivatives of the 5 flux terms with
respect to the 5 solution variables).

For edge-based residual kernels, it is common for 1 SIMT
thread to compute the edge-centered value and then update
both the left and right nodes atomically. Edge-based kernels
use a lookup structure3 to obtain the left and right node indices
for a given edge. The edge map structure is sorted in ascending
order using the left node value. FUN3D uses a node reordering
scheme (i.e., reverse Cuthill-McKee [8]) to cluster neighboring
nodes close together in memory to improve data locality. As

3In C/C++, struct EdgeMap {int left, right;}.

TABLE I: Example edge-list showing sorted left and unsorted
right node index pairs.

Edge index 0 1 2 3 4 5 6 7 8 9 . . .

Left node index 0 0 0 1 1 1 1 1 2 2 . . .
Right node index 3 1 2 3 4 2 5 6 3 7 . . .

a result, the right nodes in the edge list are not sorted but the
indices tend to be relatively close in value to the left node
indices. Also, the same nodal index may occur on both left
and right entries of the edge-list. See Table I for an example
edge-list taken from the benchmark mesh used in this study.

The sorted nature of the edge-list is beneficial for cache
reuse, especially when loading nodal data needed to compute
edge terms. However, there is a high collision rate when
consecutive threads atomically update the sorted left nodes
of consecutive edges.

For cell-based viscous flux kernels, collaborative groups
(CGs) of threads are used per cell. CGs use warp-level
functions to efficiently synchronize and exchange register data
(i.e., shuffles). The size of a tile of threads in a CG are
restricted to the SIMT width of the hardware (i.e., 32 on
NVIDIA and 64 on AMD) and must be a power-of-2. Note,
at the time of this study, ROCm does not directly support
a CUDA cooperative-groups framework so all functionality
needed for CG programming was written into FUN3D.

Within a given cell, the viscous flux of edge-connected
nodes are updated using the edge-centered flux. In the baseline
implementation, edges in a cell are computed in parallel
by the CG threads and the edge-centered flux values are
scattered to the left and right nodes atomically (e.g., 9 edges
in PRZ cells scatter values to 6 nodes). This leads to 12 (i.e.,
3× 4) atomic-add operations per-node, per-cell in the viscous
residual flux kernels. As noted above, FUN3D uses a node
reordering scheme to cluster neighboring cells to boost data
spatial locality. A consequence is that cells containing the same
node are processed concurrently and that the same node may
be updated by threads in the same thread-block or warp. This
increases the collision rates of the atomic updates.

In the viscous flux Jacobian (visjac) kernel, all nodes
influence all other nodes within the same cell. Given Nn nodes
per cell, this leads to N2

n node-node interactions of which there
are Nn diagonal and Nn(Nn − 1) off-diagonal interactions.
For the perfect-gas model, there are only 17 nonzero values
in the 5× 5 block matrices that must be updated.4 The block
matrices are stored in column-major format and the 17 nonzero
terms are not contiguous. Off-diagonal block matrix entries
are stored in single-precision since FUN3D uses a mixed-
precision iterative solver to approximately solve the linear
system each nonlinear iteration. (Diagonal block matrices use
full 64b precision.) This reduces the bandwidth and storage
requirements significantly.

We have investigated several strategies for improving the
performance of kernels dependent upon global atomic-add

4For PRZ cells, the visjac updates require 17×N2
n = 612 values per cell.

operations in FUN3D. Broadly, these methods focus on the
following goals:

1) Reduce the overall number of atomic-add operations
needed to conserve bandwidth to the L2 cache.

2) Reduce the number of atomic-add collisions to avoid
serialization.

3) Improve L2 hit rate to conserve global memory band-
width for kernel load operations.

To address these, we have implemented several methods
which are summarized as:

• Warp-level pre-atomic aggregation: combine (add) values
that will update the same address using warp-level shuffle
operations and atomically update once. (Goals: 1 and 2)

• Warp-level shuffle transposition: reorder per-thread AoS
data to SoA format using warp shuffle operations to
increase cacheline reuse in the atomic-add operations.
(Goals: 3)

• Warp or block-level shared memory transposition: write
per-thread AoS data to SoA format using shared memory
to increase cacheline reuse in the atomic-add operations.
(Goals: 3)

For edge-based kernels, we have investigated using the
sorted edge-list to locally reduce (accumulate) the values at the
warp level and then issuing a single atomic-add per value. This
concept, pre-atomic warp aggregation, is designed to reduce
the frequency of atomic-add’s and the collision rates since
the left nodes of the edge-list point to the same node. Warp-
level atomic aggregation has been used successfully to improve
the throughput of data filtering [9] and graph traversal [10]
operations on NVIDIA CUDA GPUs. We have implemented
two variants of this approachthat target sorted and unsorted
node lists. The warp-aggregation algorithm is split into two
parts: partitioning and reduction. The partitioning phase finds
lanes in a warp that have the same node indices. Partitioning
equates directly to the match_any_sync function in CUDA
where the node index is the matching value. All lanes that
are members of the same partition (i.e., have the same node
index) have the same resulting bit-mask after partitioning.
The match_any function does not exist in ROCm and was
created using warp-level ballot and shuffle functions.

The reduction phase sums (accumulates) values for each
partition. We created specialized reduction operations when
the node indices are known to be sorted and contiguous lanes
are all members of the same partition. For unsorted node
lists, the partition’s lanes are spread arbitrarily across the bit-
mask and the lane indices must be found via a search which
increases the reduction cost compared to the sorted variant.

Table II shows the median number of unique nodes when
processing the edge list in batches of 32 and 64 edges
concurrently (i.e., the SIMT widths) on the benchmark mesh.
The median values for the left side of the edge list equate to
contiguous partitions of 5.3 and 5.8 lanes. For the right nodes,
the set lengths are only 1.3 and 1.4 and are not contiguous.
The relatively low number of unique nodes in the 9th decile
of edges (i.e., 9 and 18 in 90% of edges) indicates the high

TABLE II: Median number and 9th decile of unique nodes
per set of 32 or 64 edges in the edge-to-node mapping from
the 1M benchmark.

Width Unique Nodes
Median 9th decile

Left Right Left Right
32 6 25 9 28
64 11 45 18 50

probability of having useful aggregates. That is, statistically,
the number of colliding atomic-add operations for the sorted
node list is reduced by a factor of 5-6x in 50% of edges (or
3-4× in 90% of edges). This also shows that there is limited
benefit from the unsorted right node list.

The warp-aggregation approach can reduce the frequency
of atomic-add collisions; however, it does not address the
cacheline efficiency of the atomic-add operation when multiple
values per node must be updated. As noted, it is common
for each node to require 4-5 values for residual kernels and
up to 25 values for Jacobian kernels. We have observed that
it is beneficial to have contiguous threads issue atomic-add
operations to contiguous array locations. It is likely that this
is due to cacheline reuse since multiple threads in the same
warp would issue the same instruction concurrently thereby
queuing the atomic-add event concurrently. This is analogous
with the common GPU memory optimization in which it is
more efficient to read/write contiguous data using contiguous
threads (i.e., coalesced memory access).

Due to FUN3D’s AoS nodal data storage format, it is
common for 1 thread to compute all flux or other update
terms for a given node. To facilitate contiguous atomic-add
operations, we must transpose the data such that contiguous
threads will issue atomic updates to contiguous array locations
for the same nodal index. A common approach for this is to use
shared memory as a staging area to transpose the AoS to SoA
format. Shared memory on both CUDA and AMD GPUs can
be written efficiently using non-unit-stride access so long as
bank conflicts are avoided (i.e., concurrent writes to the same
bank). When the number of values per node is prime (e.g., 5 or
17), this is generally not an issue. Once the data are written to
shared-memory and the threads synchronize appropriately, the
CG threads traverse the data in transposed order and atomically
update the global memory. This approach is straightforward
but adds overhead for thread synchronization, shared-memory
read and write latency, and shared-memory storage.

Another approach is to transpose the data within each CG
tile using register shuffle functions. We have investigated
two algorithms depending upon the number of values per
node (k) that must be transposed. When k is a power-of-2
(e.g., 4 in visrhs) and not greater than the CG size (which
must be a power-of-2 by definition), each set of k adjacent
lanes transpose their values using k − 1 register shuffles.
Once transposed, the k adjacent lanes issue atomic updates
to contiguous memory locations.

When k is a prime value (e.g., 5 in roe-flux), it is possible
to transpose the data using k shuffle exchanges. Unlike the

Lane Initial Values Transposed
0 0 1 2 3 0 4 8 12
1 4 5 6 7 1 5 9 13
2 8 9 10 11 2 6 10 14
3 12 13 14 15 3 7 11 15
4 16 17 18 19 16 20 24 28
5 20 21 22 23 17 21 25 29
6 24 25 26 27 18 22 26 30
7 28 29 30 31 19 23 27 31

(a) k = 4 (power-of-2)

Lane Initial Values Transposed
0 0 1 2 0 8 16
1 3 4 5 1 9 17
2 6 7 8 2 10 18
3 9 10 11 3 11 19
4 12 13 14 4 12 20
5 15 16 17 5 13 21
6 18 19 20 6 14 22
7 21 22 23 7 15 23

(b) k = 3 (prime)

Fig. 1: Example data layout before and after shuffle-based
transposition of CG tile with 8 threads and (a) k = 4 (i.e.,
power-of-2) and (b) k = 3 (i.e., prime) values per thread.

method for k is a power-of-2, which transposes only k adjacent
lanes in place, the prime-k method transposes all L lanes
(where L ≥ k) from a virtual v[L][k] rectangular array to
v[k][L] and requires k temporary storage per thread. The
additional storage is needed for the more complex exchange
network. Specifically, lane p seeks to send its ith value and
receive the jth value from lane q where j and q are found
algebraically for i ∈ [0, k) using the following equations:

q = (pSL,k + iSL,k(L− 1)) (mod L)
j = (kq + i)\L. (1)

Here, SL,k is a prime-valued stride that is dependent upon
both L and k. For L ≤ 64 and a power-of-2, SL,3 = 43 and
SL,5 = 13. After the CG tile transposes its data, the k values
per node can be atomically updated with unit-stride access.
See Figures 1(a) and 1(b) for example data layouts before and
after the power-of-2 and prime-k transpositions.

III. RESULTS

We have implemented the three strategies introduced in
the previous section designed to improve the performance
of device kernels using atomic-add operations. The first two
kernels to be discussed are edge-based and update the fp64
right-hand-side residual vector with an AoS format (e.g.,
double res[N_nodes][5]). The roe-flux kernel com-
putes the inviscid flux vector and updates all 5 terms at each
vertex based on data computed at the edge midpoints. One
thread is mapped to each edge in a thread-block and both
left and right nodes are updated per-edge. The lstgs kernel
computes the contribution of an edge to the nodal gradient
vector resulting in 15 values per-node that are atomically
updated per-edge. Two threads are mapped per edge, one for

TABLE III: Median device run-time (ms) and speed-up relative
to the Global atomic method for the edge-based inviscid flux
kernel (roe-flux).

Method V100 A100 MI100
Global Atomic 2.49 – 1.75 – 6.30 –
Smem Trans.† 1.52 (1.64) 1.01 (1.73) 3.49 (1.81)
Hybrid Agg. 2.30 (1.08) 1.03 (1.70) 2.30 (2.74)
Warp Agg. N/A 1.02 (1.72) 2.62 (2.40)
Warp Trans. 2.41 (1.03) 1.23 (1.42) 3.09 (2.04)

each node, since the computations are based largely at the
nodes, not the edge midpoints.

For all kernels reported here, the thread-block layout (i.e.,
the number of threads in the x/y/z directions) was tuned to find
the fastest combination with the constraint that whole warps or
wave-fronts are allocated (e.g., multiples of 32 or 64) for the
NVIDIA and AMD GPUs. The kernels were run for at least
20 samples and the median device times were recorded to
remove spurious fast or slow run-times. Data were collected
using the vendor-provided profiling tools (e.g., rocprof). All
results presented are based on ROCm release 4.2.0 for the
MI100 and CUDA release 11.2 for the V100 and A100 GPUs.

All results reported here are based on a FUN3D mesh
with 1.124 million nodes, 5.968 million edges, 3.040 TET
cells, and 1.172 million PRZ cells. This same benchmark, the
1M benchmark, has been used extensively in previous single-
device FUN3D accelerator performance studies [2], [5].

Table III gives the device run-time and speed-up relative to
the Global atomic method (i.e., updating the global memory
locations directly). The original method5 for roe-flux used
shared-memory to store the transposed edge-centered flux
(Smem Trans.) and the 5 left and right nodal values per-
edge are atomically updated by 10 contiguous threads. This
approach is approximately 64-82% faster than if each thread
atomically updated the global memory directly (i.e., Global
atomic) on all three GPUs with the largest impact on the AMD
MI100. We observe that while the performance of the MI100
was improved significantly using the Smem Trans. method,
the relative performance difference between the NVIDIA
and AMD GPUs still shows a high penalty for the lack of
fp64 atomic-add hardware support. The Smem Trans. method
improves the cacheline reuse but not the penalty of atomic
update collisions, especially when using software-based fp64
atomic-add operations on the MI100.

Two variants of warp-aggregation were attempted. In Hybrid
Agg., the sorted left node was aggregated and atomically
updated sequentially by the first lane of the aggregate (i.e.,
the leader) and the unsorted right node used the Smem Trans.
method. In Warp Agg., both the sorted left and unsorted right
nodes of the edge list were aggregated and the aggregate
leaders updated the 5 values sequentially. On MI100, Hybrid
Agg. was the fastest approach giving a 52% improvement over

5The original atomic update method for each kernel is identified with † to
give an indication of the realized performance improvement.

TABLE IV: Median device run-time (ms) and speed-up (paren-
thesis) relative to the Global atomic method for the edge-
based, least-squares gradient kernel (lstgs).

Method V100 A100 MI100

Global Atomic† 5.95 – 4.09 – 19.18 –
Smem Trans. 2.70 (2.20) 1.93 (2.12) 6.90 (2.78)
Warp Agg. 4.69 (1.27) 2.07 (1.98) 4.36 (4.40)
Hybrid AggT. 4.73 (1.26) 1.39 (2.94) 3.19 (6.01)

Smem Trans.. Both warp-aggregation methods are ineffective
on the V100; the performance is degraded significantly and is
only slightly faster than Global Atomic. However, the A100 is
statistically unchanged with either warp-aggregation method.
With the Hybrid Agg. method, the performance gap between
the NVIDIA and MI100 GPUs narrows but the MI100 is still
significantly slower (e.g., 51% slower than V100).

The prime-value warp-transposition (Warp Trans.) method
was also tested for roe-flux. Both transposition methods (e.g.,
shared-memory or shuffle-based) lead to the same atomic-add
access pattern and the performance on MI100 is comparable.
The shuffle-based approach is 13% faster, which may be due
to reduced shared-memory and synchronization latency. On
A100, the warp-level transposition is slower than the shared-
memory variant though the deficit is less than on the V100.

For lstgs, the Global Atomic method updates all 15 values
per node and per edge directly using global atomic-add oper-
ations. As seen in Table IV, the Smem Trans. method resulted
in greater than a factor of 2 improvement on all platforms.
The lstgs kernel updates 3 times as much data as roe-flux and
the higher cost can be seen in both Global Atomic and Smem
Trans. methods. Warp Agg., applied to both left and right
nodes, improves the MI100 performance by nearly a factor
of 4 over the baseline but has a lesser impact on the V100
and A100 platforms. Note that two approaches are possible
with Warp Agg. in lstgs: aggregate all 5 nodal values per
Cartesian direction (i.e., 3 aggregations) or aggregate the 3
gradient components per variable (i.e., 5 aggregations). For
MI100 and V100, performing 3 aggregations on the 5 values
was more efficient but the converse occurred on A100 for
unknown reasons. The Warp Agg. results in Table IV show
the faster of these two approaches for each platform.

A hybrid aggregation and transposition strategy using
shared-memory similar to that used in roe-flux was also
investigated. In the lstgs Hybrid AggT approach, both left and
right nodes were aggregated and then the aggregate leaders
wrote to shared-memory in a compressed format such that
all aggregated data were contiguous. The memory offsets
into the shared-memory array were found by performing a
warp-level prefix-sum (i.e., scan), a common approach for
compressing data based on a conditional. Contiguous data
were needed in order to efficiently traverse the transposed
data after remapping from 1 thread per node and edge to
5. This approach further accelerated the MI100 and A100
performances over either Smem Trans or Warp Agg. alone. The

net effect was approximately a factor of 3 and 6 performance
acceleration on the A100 and MI100 GPUs, respectively.
However, the V100 did not benefit, likely due to the relatively
poor performance with Warp Agg..

We have implemented several variants of the residual vis-
cous flux (visrhs) and viscous Jacobian (visjac) kernels. In
both, the different cell types are processed separately to allow
for specialization of the kernels based on Nn, Ne edges, and
Nf faces per cell. Except for the TET version of visrhs, CG
tiles are assigned to each cell and the size of the CG tiles is a
tuning parameter along with the thread-block dimensions. For
simplicity, blockDim.x is customarily defined as the CG
tile size and blockDim.y represents the number of cells per
thread-block to be processed in cell-based kernels.

As discussed earlier, the baseline versions of the generic
cell-based visrhs and visjac kernels loop over the edges per cell
and scatter the results of the two nodes of each edge (i.e., edge-
parallel or scatter algorithm). We have investigated several
methods to avoid the edge-to-node race condition. One strategy
is to use atomic-add to global memory directly. However,
as was seen in the edge-based kernels, this approach is not
efficient due to the high atomic-add collision rates. Recall that
adjacent cells in the reordered cell indexing are likely to share
an edge or face, which results in higher collision rates since
they will then share 2 or more nodes.

Table V shows the baseline results for visrhs using the
Global Atomic update method using the scatter algorithm.
Note, only PRZ data are available since the TET version of
visrhs does not use the generic cell-based implementation.6

The relative difference in performance between the MI100 and
NVIDIA GPUs is comparable to that of roe-flux kernel using
global atomic updates. This is expected since both kernels
update fp64 values and number of values per node is similar
(i.e., 4 vs. 5).

In visrhs, we have evaluated warp-aggregation on the left
and right nodes of each edge. This is done for all Ne edges per
cell. Unlike the edge-based kernels, the warp-aggregate nodes
are not sorted and the more expensive unsorted reduction
kernel must be used. Warp Agg. improves the performance
by 42% for MI100 and 46% for A100; however, the V100
performance is significantly degraded as before.

An alternative method to avoid the edge-to-node scatter
has been implemented. This method uses a node-parallel (or
gather) approach in which the edges for a given node are
summed without any possible race condition within the same
cell. This reduces the parallelism per-cell since Nn < Ne

for all cell types; however, this has no local race conditions
and reduces the number of global atomic-add operations by a
factor of 3. The gather results in Table V are given for both
PRZ and TET cells. The specialized visrhs kernel for TET
cells explicitly uses this approach and was written specifically
for 1 thread per cell and all internal loops over Nn, Ne, and
Nf have been effectively unrolled, fused and collapsed. Even

6The cell-based viscous flux formulation greatly simplifies when applied to
TET cells warranting a special, high-performance implementation.

with Global Atomic updates, visrhs is improved by 61% and
63% on the NVIDIA GPUs and more than 120% on MI100.

The benefit of Warp Agg. in the gather approach is highly
dependent upon cell type and platform. Because 1 thread is
assigned to each cell in the specialized TET version of visrhs,
there is a high probability of common nodes in the same warp.
The large aggregate population counts with TET cells leads to
a 75% and 82% benefit on the A100 and MI100. A similar
reason leads to lower performance on PRZ: CG tiles with more
than 1 thread reduce the number of cells per warp and reduce
the probability of matching nodes. Similarly, a CG tile with
less than Nn threads reduces the number of nodes that will
participate in the aggregation at the same time. It is important
to note that this latter effect occurs in the TET algorithm as
well. Only 1 of 4 nodes is aggregated since the 4 nodes are
processed sequentially in each thread. That is, the probability
of the ith logical node in the warp’s cells matching is lower
than the probability of any nodes matching. As before, V100
performs poorly with warp aggregation regardless of cell type.

The power-of-2 shuffle-based warp transposition algorithm
was also used to accelerate the node-parallel, gather version
of visrhs kernels. The Warp Trans. results in Table V show
substantial improvements over Warp Agg. on the V100 and
MI100 for TET cells but a decrease on A100. Interestingly,
the acceleration from Warp Trans. on MI100 gives better
performance on TET cells than V100 despite the lack of fp64
atomic-add hardware support.

A final test was conducted blending both Warp Agg. and
Warp Trans. on MI100 in an attempt to both reduce the
collision rate and increase L2 cache efficiency. While this
approach does give a small improvement over Warp Agg.
alone, at least for TET cells, this is less performant than using
Warp Trans. alone.

Table VI shows the run-times for the visjac kernel. As can
be seen, this kernel is substantially more expensive than the
previously studied kernels and accounts for a large portion7 of
the overall FUN3D run-time. As with visrhs, the visjac kernel
is specialized for different cell types. The two kernels are very
similar as they represent the same underlying formulation for
viscous fluxes.

We have investigated three strategies for controlling the
thread-safety in the local shared-memory node updates in the
edge-parallel (scatter) algorithm. The first uses atomic-add
operations on the shared-memory data and then updating the
global memory from the transposed shared-memory data atom-
ically. We have also investigated two scheduling methods such
that the node data in shared-memory are updated without the
need for an atomic update. The first, serialization, explicitly
updates one edge at a time though multiple Jacobian entries
can still be updated in parallel. The second, independent sets,
identifies sets of edges with independent nodes that can be
processed concurrently. Two or three edges can be updated
concurrently for TET or PRZ cells, respectively. This reduces

7The Jacobian matrix can be reused for several nonlinear iterations if the
convergence rate is above a threshold. This reduces the overall cost of the
Jacobian assembly though it still remains a performance-critical kernel.

TABLE V: Median run-time (ms) and speed-up (parenthesis) relative to the Global Atomic methods for TET and PRZ kernels
using several atomic update acceleration methods in the cell-based, viscous flux (visrhs) kernel using edge- and node-parallel
per-cell cooperative-group parallel algorithms. Note: Warp AggT uses both warp-aggregation and warp-transposition.

Method V100 A100 MI100
TET PRZ TET PRZ TET PRZ

Edge-parallel
Global Atomic† 2.92 – 2.25 – 6.92 –
Warp Agg. 5.92 (0.49) 1.54 (1.46) 4.87 (1.42)

Node-parallel
Global Atomic‡ 1.72 – 1.81 (1.61) 1.33 – 1.38 (1.63) 3.90 – 3.09 (2.24)
Warp Agg. 3.49 (0.49) 2.40 (1.22) 0.76 (1.75) 1.42 (1.58) 2.14 (1.82) 3.29 (2.10)
Warp Trans. 1.99 (0.86) 2.32 (1.26) 1.44 (0.92) 1.89 (1.19) 1.31 (2.98) 2.77 (2.50)
Warp AggT 2.94 (0.56) 3.19 (0.58) 1.19 (1.12) 1.86 (0.74) 1.90 (2.05) 3.31 (2.09)

TABLE VI: Median run-time (ms) and speed-up (parenthesis) relative to Global atomic method using different atomic update
acceleration methods and per-cell cooperative group parallel algorithms (i.e., edge-parallel (scatter) or node-parallel (gather))
in the cell-based, viscous flux Jacobian (visjac) kernel for TET and PRZ cell types. Note: all implementations, except Global
atomic, use shared-memory transposition of the data.

Method V100 A100 MI100
TET PRZ TET PRZ TET PRZ

Edge-parallel
Global Atomic 55.57 – 67.29 – 43.39 – 37.32 – 154.47 – 133.46 –
Smem Atomic 25.33 (2.19) 18.06 (3.73) 16.67 (2.60) 18.25 (2.40) 44.73 (3.45) 43.86 (3.04)
Smem serial† 20.65 (2.69) 20.89 (3.22) 15.08 (2.88) 13.13 (2.84) 40.74 (3.79) 50.30 (2.65)
Smem indep. 17.49 (3.18) 17.65 (3.81) 11.62 (3.73) 12.30 (3.03) 46.96 (3.29) 43.39 (3.08)

Node-parallel
Global Atomic 23.37 (2.38) 24.90 (2.70) 16.38 (2.65) 15.62 (2.39) 50.72 (3.05) 47.07 (2.84)
Smem Trans. 14.38 (3.86) 13.47 (5.00) 8.92 (4.86) 9.29 (4.02) 30.19 (5.12) 29.53 (4.52)

the potential edge-based parallelism by a factor of 3 for TET
and PRZ cells but avoids the need for local atomic updates or
the need to serialize the updates to local shared-memory. It is
important to note that while the off-diagonal Jacobian matrix
terms are stored in single-precision, all internal computations,
including shared-memory atomic-add operations, are done in
full fp64 precision.

As shown in Table VI, Global Atomic is approximately
2-4 times slower than methods using shared-memory for all
platforms due to the large amount of data that must be atom-
ically updated. That is, all shared-memory methods reduce
the number of global atomic-add operations by a factor of 3
times. While no platform has hardware support for atomic-add
operations in shared-memory, the Smem Atomic performance is
comparable, and at times better, than the original Smem serial
method. On the NVIDIA GPUs, the Smem indep. method (i.e.,
independent edge sets) is consistently more efficient than the
other edge-parallel methods.

The node-parallel algorithm for visjac follows the same
strategy as in visrhs. We see that with Global atomic updates,
the performance is approximately 3 times faster than in the
edge-parallel method since the number of total updates per
node is reduced by a factor of 3. When combined with
shared-memory transposition (Smem Trans.), the performance
improves for all devices and all cell types. Overall, this
approach is between 35 and 70% faster than the original Smem
serial method.

Warp-aggregation has not been studied for the Jacobian
assembly. There is possible aggregation across the Nn atomic
updates to the block diagonal matrix but our studies indicate
that the dominant cost is the Nn(Nn− 1) off-diagonal matrix
updates per-cell, even with the lower precision. The matching
diagonal matrix updates coincide with common nodes across
neighboring cells and, as noted earlier, occurs frequently.
However, the probability of updating the same off-diagonal
entry is much lower. For example, when processing 4 to 8 cells
concurrently in PRZ cells per warp (practical values based
on the fastest CG tile sizes), only 20 to 30% of off-diagonal
entries would match at least half of the time. As a result,
the off-diagonal atomic updates appear to be more limited by
bandwidth than collisions.

IV. CONCLUSIONS

In this study, we investigated methods to improve the per-
formance of select performance-critical FUN3D GPU kernels
that are dependent upon floating-point atomic updates. Atomic
updates are used to maintain a high degree of parallelism while
modifying the irregular, unstructured mesh data structures in
FUN3D. Three GPU platforms were tested, the NVIDIA V100
and A100 and the AMD MI100 GPUs. The optimization
methods were (i) transposition of the array-of-structures to
structure-of-arrays vertex data layouts before atomic updates
to improve spatial locality (cache efficiency) of the parallel
atomic updates and (ii) pre-atomic aggregation (reductions)

of the nodal data to reduce the frequency of atomic updates.
Transposition kernels using shared-memory and register shuf-
fles were demonstrated within cooperating groups (CG) of
threads. Pre-atomic reductions within CGs were demonstrated
using register shuffles for sorted edge and unsorted cell data.

The following items summarize the findings from this study:

• Algorithm modifications that avoid atomic updates pro-
vided the most consistent and effective performance
increases across the three GPU devices. Refactoring
the viscous flux and viscous Jacobian kernels to use a
node-based gather approach compared to the original
edge-based scatter approach, resulted in 40-70% per-
formance improvement over the baseline implementation
even though the available parallelism was reduced.

• Shared-memory floating-point atomic updates, even with-
out dedicated hardware support, provided significant im-
provement over equivalent atomic updates to global mem-
ory. We observed performance improvement between a
factor of 2 and 3.7 on all platforms on the costly viscous
Jacobian kernel.

• Atomic updates to contiguous memory had a large impact
on all platforms. This is likely due to cacheline reuse in
the last-level (L2) cache when updating global memory.

• Transposing the array-of-structure data before atomic
updates improved cache efficiency.

– Shared-memory transposing is viable on all tested
platforms provided resources are available. Synchro-
nization overhead is reduced by limiting data sharing
to threads within a CG tile (or warp).

– Register-based transposing when the per-thread array
length is a small power-of-2 (e.g., 4) was found to
be faster than shared-memory transposing on MI100
and did not increase resource requirements. This size
can be challenging for shared-memory transposing
due to increased likelihood of bank conflicts.

• Warp aggregation was beneficial when applied to the
sorted components of the edge list compared to unsorted
lists. This is attributed to the high rate of node index
repetitions, which would be atomic update collisions,
in the sorted edge list and the more efficient reduction
algorithm that is possible with the sorted data.

• Aggregation was most performant when combined with
shared memory transposition as this reduced the fre-
quency of updates and improved the cache efficiency. The
aggregated data could be easily compacted when writ-
ing to shared-memory, which improved the performance
compared to register-based transposition.

• The register-based methods were not effective on the
NVIDIA V100 GPU and, in general, reduced the perfor-
mance while the performance was generally improved on
the A100 GPUs. The MI100 performance was improved
the most with the registered-based methods.

Overall, the performance on the AMD MI100 GPU was sig-
nificantly improved using transposition, aggregation, or their
combination reducing the overhead due to lacking hardware

support for double-precision floating point atomic updates.
Despite these improvements, in all but the viscous flux kernel
(with TET cells), the MI100 remained between 18-53% slower
than the V100 GPU and the tested kernels were consistently
faster on the A100 GPU with differences of between 72% and
238%. However, these performance differences should narrow
on future generations of the AMD GPU if floating-point
double-precision atomic updates were supported in hardware.

ACKNOWLEDGMENT

This research was sponsored by the NASA Langley Re-
search Center CIF/IRAD program, the NASA Transforma-
tional Tools and Technologies (TTT) Project of the Transfor-
mative Aeronautics Concepts Program under the Aeronautics
Research Mission Directorate, and the National Institute of
Aerospace Cooperative Agreement award NNL09AA00A. The
authors would like to thank Advanced Micro Devices, Inc.,
NVIDIA Corporation, and Dr. Sameer Shende of the Univer-
sity of Oregon. This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725. The authors are also grateful for the support of
the Frontier Center of Excellence.

REFERENCES

[1] R. Biedron, J.-R. Carlson, J. Derlaga, P. Gnoffo, D. Hammond, K. Jacob-
son, W. Jones, W. Kleb, E. Lee-Rausch, E. Nielsen, M. Park, C. Rumsey,
J. Thomas, K. Thompson, A. Walden, L. Wang, and W. Wood, FUN3D
Manual 13.7, NASA/TM-2020-5010139, 2020.

[2] A. Walden, M. Zubair, and E. Nielsen, “Performance and Portability of a
Linear Solver Across Emerging Architectures,” in Seventh Workshop on
Accelerator Programming Using Directives, ser. WACCPD 2020, 2020.

[3] G. Nastac, A. Walden, E. Nielsen, and A. Frendi, “Implicit Ther-
mochemical Nonequilibrium Flow Simulations on Unstructured Grids
Using GPUs,” AIAA SciTech Forum, 2021.

[4] ORNL. (2021) Frontier. [Online]. Available:
”https://www.olcf.ornl.gov/frontier”

[5] M. Zubair, E. Nielsen, J. Luitjens, and D. Hammond, “An Optimized
Multicolor Point-Implicit Solver for Unstructured Grid Applications on
Graphics Processing Units,” in Proceedings of the Sixth Workshop on
Irregular Applications: Architectures and Algorithms, ser. IA3 2016.
Piscataway, NJ, USA: IEEE Press, 2016, pp. 18–25.

[6] A. Walden, E. Nielsen, B. Diskin, and M. Zubair, “A Mixed Precision
Multicolor Point-Implicit Solver for Unstructured Grids on GPUs,” in
Ninth Workshop on Irregular Applications: Architectures and Algo-
rithms, ser. IA3 2019, 2019.

[7] A. Walden, M. Zubair, and E. Nielsen, “Performance Portability Issues
for a Large-Scale Computational Fluid Dynamics Application on Emerg-
ing High-Performance Architectures,” in Performance, Portability, and
Productivity in HPC Workshop, September 2020.

[8] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse
symmetric matrices,” in Proceedings of the 1969 24th National
Conference, ser. ACM ’69. New York, NY, USA: Association
for Computing Machinery, 1969, p. 157–172. [Online]. Available:
https://doi.org/10.1145/800195.805928

[9] A. Adinets. (2017) Cuda pro tip: Opti-
mized filtering with warp-aggregated atomics. [Online].
Available: ”https://developer.nvidia.com/blog/cuda-pro-tip-optimized-
filtering-warp-aggregated-atomics”

[10] S. Pai and K. Pingali, “A compiler for throughput optimization of graph
algorithms on gpus,” SIGPLAN Not., vol. 51, no. 10, p. 1–19, Oct.
2016. [Online]. Available: https://doi.org/10.1145/3022671.2984015

APPENDIX A
EDGE KERNEL EXAMPLES

1 t e m p l a t e <c l a s s BlockDims , i n t WarpSize , . . . >
2 g l o b a l vo id
3 E d g e K e r n e l D i r e c t (do ub l e * oda ta , . . .)
4 {
5 s t a t i c a s s e r t (BlockDims : : Y == 2) ;
6 / * Map t h r e a d s t o edge and node . * /
7 a u t o s i d e = t h r e a d I d x . y ;
8 i n t e d g e i d = / * b l o c k o f f s e t * / + t h r e a d I d x . x ;
9 i n t node id = EdgeMap [e d g e i d] [s i d e] ;

10 / * Complex c o m p u t a t i o n on t h i s node / edge . * /
11 do ub l e n o d e v a l s [5] = { . . . } ;
12 f o r (i n t i = 0 ; i < 5 ; ++ i)
13 atomicAdd (&o d a t a [i +5* node id] , n o d e v a l s [i]) ;
14 }

Listing 1: Baseline example edge kernel directly updating
global memory.

1 t e m p l a t e <c l a s s BlockDims , i n t WarpSize , . . . >
2 g l o b a l vo id
3 EdgeKernel SmemTranpose (do ub l e * oda ta , . . .)
4 {
5 / * BlockDims compi le − t ime b l o c k I d x . * /
6 s t a t i c a s s e r t (BlockDims : : X % WarpSize == 0
7 and BlockDims : : Y == 2) ;
8 s h a r e d do ub l e smem [2] [BlockDims : : X] [5] ;
9 a u t o s i d e = t h r e a d I d x . y ;

10 {
11 / * Map t h r e a d s t o edge / node . * /
12 i n t e d g e i d = / * b l o c k o f f s e t * / + t h r e a d I d x . x ;
13 i n t node id = EdgeMap [e d g e i d] [s i d e] ;
14 / * Complex c o m p u t a t i o n a l f o r t h i s edge / node . * /
15 do ub l e n o d e v a l s [5] = { . . . } ;
16 f o r (i n t i = 0 ; i < 5 ; ++ i)
17 smem [s i d e] [t h r e a d I d x . x] [i] = n o d e v a l s [i] ;
18 }
19 syncwarp () ;
20 i n t warp id = t h r e a d I d x . x / WarpSize ;
21 i n t l a n e i d = t h r e a d I d x . x % WarpSize ;
22 i n t o f f s e t = warp id * WarpSize ;
23 f o r (i n t i = 0 ; i < 5 ; ++ i) {
24 / * Remap t h r e a d s t o edge i n warp t i l e . * /
25 i n t l i n e a r i d = i * WarpSize + l a n e i d ;
26 i n t e d g e i d = l i n e a r i d / 5 + o f f s e t ;
27 i n t node id = EdgeMap [e d g e i d] [s i d e] ;
28 i n t v a r i d = l i n e a r i d % 5 ;
29 a u t o v a l = smem [s i d e] [e d g e i d] [v a r i d] ;
30 atomicAdd (&o d a t a [i +5* node id] , v a l) ;
31 }
32 }

Listing 2: Edge kernel with data transposed in shared-memory.

APPENDIX B
SHUFFLE-BASED TRANSPOSITION KERNELS

1 t e m p l a t e <c l a s s BlockDims , i n t N, . . . >
2 d e v i c e vo id
3 t r a n s p o s e v e c t o r 2 k (do ub l e v [N] , Mask mask)
4 {
5 c o n s t e x p r a u t o L = BlockDims : : X;
6 s t a t i c a s s e r t (isPowerOfTwo (N) and
7 L >= N and
8 L % N == 0 and
9 L <= WarpSize) ;

10 f o r (i n t s = 1 ; s < N; ++ s) {
11 / * Index of l a n e t o t a k e from . * /
12 i n t q = t h r e a d I d x . x ˆ s ;
13 / * Index of v a r i a b l e t o g i v e / t a k e . * /
14 i n t j = q % N;
15 v [j] = SHFL(mask , v [j] , q , L) ;
16 }
17 }

Listing 3: Shuffle-based transposition algorithm for per-thread
data that are power-of-2 in length.

1 t e m p l a t e <c l a s s BlockDims , i n t N, . . . >
2 d e v i c e vo id
3 t r a n s p o s e v e c t o r p r i m e (d oub l e v [N] , Mask mask)
4 {
5 / * F e t c h f i x e d s t r i d e f o r t h i s L and N. * /
6 c o n s t e x p r a u t o S = P r i m e S h i f t<L , N> : : S ;
7 s t a t i c a s s e r t (isPowerOfTwo (L) and
8 N < L and
9 L <= WarpSize) ;

10 / * Make a copy of i n p u t v [] . * /
11 do ub l e w[N] = {v [0] , . . . } ;
12 f o r (i n t i = 0 ; i < N; ++ i) {
13 a u t o o f f s e t = t h r e a d I d x . x * S +
14 i * (L−1) * S ;
15 / * Source l a n e . * /
16 a u t o q = o f f s e t % L ;
17 / * Outpu t i n d e x i n v [] . * /
18 a u t o j = (N * q + j) / L ;
19 v [j] = SHFL(mask , w[i] , q , L) ;
20 }
21 }

Listing 4: Shuffle-based transposition algorithm for per-thread
data lengths of 3, 5, or 17 (i.e., prime lengths).

